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1 Basics

1.1 Risk Neutral Measure

Definition 1.1. Let (Ω,F ,P) be a probability space.

A measure is a function µ : F → [0,∞] such that:

µ(∅) = 0

µ(A) ≥ 0 ∀A ∈ F

µ(
∞⋃
i=1

Ai) =
∞∑
i=1

µ(Ai)

for any disjoint sequence of sets Ai ∈ F .

A probability measure is a measure P such that P(Ω) = 1.

Definition 1.2. Given measure space (X,F , µ), and let q be a σ-finite measure on (X,F)

We say that q is absolutely continuous with respect to µ, denoted as q ≪ µ, if µ(A) = 0

implies q(A) = 0. The two are equivalent martingale measure if q ≪ µ and µ ≪ q, or

q(A) = 0 ⇐⇒ µ(A) = 0

Definition 1.3. A risk-neutral measure is a probability measure Q such that for any

tradble asset St, its discounted price process S∗
t = St/Bt is a martingale under Q:

For all T > t:

EQ[ST/BT |Ft] = St/Bt

An easy corollary is that

EQ[St]/Bt = S0/B0 = S0

EQ[St]/S0 = Bt/B0 = ert

This is also equivalent to saying that under Q, the drift for any St is rSt:

dSt = rStdt+ σStdW
Q
t

Definition 1.4. A basic portfolio π with weight vector πt = (πt,0, πt,1) has price process Vt:

Vt =πt,0Bt + πt,1St
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A portfolio π with price process Vt is self-financing if:

dVt = πt,0 dBt + πt,1 dSt

In discrete time, we can write

Vt = πt−1,0Bt + πt−1,1St

i.e. A portfolio’s only change in value is due to change in price of Bt and St, so not external

cash flow

Definition 1.5. A portfolio π is arbitrage if it is self-financing, adapted to the filtration

Ft, and:

V0(π) = 0

P (VT (π) ≥ 0) = 1

P (VT (π) > 0) > 0

Theorem 1.1. Any price process Vt is arbitrage-free iff there is an EMM Q.

In this case the discounted Vt

Bt
is a martingale under Q.

Proof. By self-financing, we have

Vt =πt−1,0Bt + πt−1,1St

Vt

Bt

=πt−1,0 + πt−1,1
St

Bt

Since St

Bt
is a martingale under Q, we have that at time t− 1

EQ

[
Vt

Bt

|Ft−1

]
=πt−1,0 + πt−1,1EQ

[
St

Bt

|Ft−1

]
=πt−1,0 + πt−1,1

St−1

Bt−1

=
Vt−1

Bt−1

So Vt

Bt
is a martingale under Q.

We can repeatedly apply to show

EQ

[
Vt

Bt

]
=

V0

B0

= 0

If π were an arbitrage, we would have P (VT (π) ≥ 0) = 1 =⇒ Q(VT (π) ≥ 0) = 1,
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This suggests that under Q, π is nonnegative but with expectation 0, so it has to be 0 a.s.

But we also have P (VT (π) > 0) > 0 =⇒ Q(VT (π) > 0) > 0, hence a contradtion.

1.2 To Find Q

We note S∗
t = St

Bt
is a martingale under Q, with Bt being the numeraire.

To work out Q, we simply solve

EQ[S
∗
T |Ft] = S∗

t

Or equivalently,

EQ[ST |Ft] = St
BT

Bt

= Ste
r(T−t)

1.2.1 Binomial Model

A simple example is the binomial model, where at t, there are two possible outcomes for t+1:

StU and StD, with probabilities q+ and q− respectively.

So we can write

EQ[ST |Ft] = StUq+ + StDq−

We solve

Ste
r(t+1−t) =StUq+ + StDq−

er =Uq+ +D(1− q+)

And we get q+ = er−D
U−D

, q− = U−er

U−D

This is solvable iff U > er > D.

Example 1.2. If a stock is at 100, can move to 90 or 120 in a year, with r = 0

Real world probability of moving up or down is not important. Under Q, we have q+ = e0−0.9
1.2−0.9

=

1
3
, q− = 1−e0

1.2−0.9
= 2

3

Example 1.3. We give a counterexample when U > er > D does not hold.

Consider a stock at 1, can move up to 3 or stay at 1.

The risk free rate is 0.
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We have q+ = e0−1
3−1

= 0, so

call = 0 · 2 + 1 · 0 = 0

Or we can buy infinite amount of calls on a stock with positive probability of going up.

1.2.2 Trinomial Model

Under the trinomial model, we have three possible outcomes for t+ 1:

StU, StM,StD with probabilities q+, (1− q+ − q−), q− respectively.

In this case we solve

StUq+ + StM(1− q+ − q−) + StDq− =Ste
r

Uq+ +M(1− q+ − q−) +Dq− =er

This is solvable iff U > er > D.

In general, the trinomial model may have 0 or infinitely many solutions.

Theorem 1.4. A market is complete if every payoff is attainable.

In a complete market, there is a unique EMM Q.

A binomial model is complete, and always has a unique solution Q, hence every payoff is

attainable and has a unique price.

Whereas in a trinomial model, some payoffs have multiple EMMs, and hence multiple prices.

Example 1.5. We hereby give an example of a trinomial model with multiple EMMs, but

quoting unique price for an ITM put option.

Consider

S0 = 10, K = 25, r = µ = 0.04, h = 0.1, T = 4

U = eµ+h = e0.04+0.1 = e0.14,

M = eµ = e0.04 = R = er,

D = eµ−h = e0.04−0.1 = e−0.06,

We have U > R > D, so the model is solvable.
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We can solve the equation:

U

R
q+ +

M

R
(1− (q+ + q−)) +

D

R
q− = 1

q+

(
U −M

R

)
+ q−

(
D −M

R

)
= 1− M

R
= 1− e0.04

e0.04
= 0

This is a straight line with infinite solutions. Given any q+, we have:

q− = −U −M

D −M
q+ = − e0.14 − e0.04

e−0.06 − e0.04
q+.

We have that Q is an EMM as Q[A] > 0 ⇐⇒ P[A] > 0 for all A ∈ FS
t .

We can for example pick a choice of (q+, q−) = (0.2, 0.2210) for Q

We start by constructing the trinomial tree for the stock price, from S0 = 10

17.507

15.220 15.841

13.231 13.771 14.333

11.503 11.972 12.461 12.969

10.000 10.408 10.833 11.275 11.735

9.418 9.802 10.202 10.618

8.869 9.231 9.608

8.353 8.694

7.866

To build the trinomial tree for the put option, we need to calculate the payoff at each leaf node,

given by (25− ST )
+

At T = 4, all payoffs are positive, being: 25− 17.507 = 7.493, · · · , 25− 7.866 = 17.134.

Each node at T = 3 is given by the expectation over Q of each of its possible payoffs (K−S4)
+,

discounted back to T = 3 with a factor of 1
R
= e−0.04.

With our choice of (q+, q−) = (0.2, 0.2210), the price of the put at the upper node at t = 3 is

given by

e−0.04 (7.493q+ + 9.159(1− (q+ + q−)) + 10.667q−)

= e−0.04 (7.493 ∗ 0.2 + 9.159 ∗ 0.579 + 10.667 ∗ 0.2210) = 8.800

and so on. We arrived with the following arbirage-free tree, which has the non-arbitrage price
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of the put at each time under each possible stock price, under the risk-neutral measure Q:

7.493

8.800 9.159

9.847 10.248 10.667

10.670 11.106 11.559 12.031

11.304 11.765 12.245 12.745 13.265

12.755 13.276 13.818 14.382

14.209 14.789 15.392

15.667 16.306

17.134

We additionally note that the whole tree is independent of our choice of (q+, q−), i.e. if we

use (0.1, 0.111), we will get the same tree.

The reasons behind is this:

We have showed that any (q+, q−) that satisfies q+ > 0, q− > 0, 1− q+ − q− > 0 and

1

R

(
Uq+ +M(1− (q+ + q−)) +Dq−

)
= 1

is an EMM.

Given the possible payoffs P (U), P (M), P (D) at t + 1, where P (x) = (K − Stx)
+, we have

that the price of the put option at t is given by

Πt(St) =
1

R

(
q+P (U) + (1− (q+ + q−))P (M) + q−P (D)

)
In general this should differs with different choices of (q+, q−),

But we note that our interested payoff is a deep ITM put option, with K > S0U
4 > S0M

4 >

S0D
4, so we have that at t = T − 1: P (U) = (K − StU)+ = K − StU , and vice versa for

P (M), P (D),

Πt(St) =
1

R

(
q+(K − StU) + (1− (q+ + q−))(K − StM) + q−(K − StD)

)
=
1

R

(
K · 1− St(Uq+ +M(1− (q+ + q−)) +Dq−)

)
=
K

R
− St

1

R

(
Uq+ +M(1− (q+ + q−)) +Dq−

)
=
K

R
− St
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so the price of the put option at T − 1 is independent of our choice of (q+, q−).

Now we consider t = T − 2:

the potential payoffs at T − 1 is K
R
− StU,

K
R
− StM, K

R
− StD,

So at t = T − 2:

Πt(ST−2) =
1

R

(
q+

(
K

R
− StU

)
+ (1− (q+ + q−))

(
K

R
− StM

)
+ q−

(
K

R
− StD

))
=
1

R

(
K

R
− St(Uq+ +M(1− (q+ + q−)) +Dq−)

)
=
K

R2
− St

Recursively, we note that our put has the same price as a short position in forward contract

at each t,

i.e.

Πt(St) = Ke−r(T−t) − St

We can check that at t = 0, we can discount K to Ke−rT = 25e−0.04·4 = 21.304 to get

Π0 = Ke−rT − S0 = 11.304.

1.3 Change of Measure

We have examined changing measure from P toQ, now we should explore more general changes

of measure.

Theorem 1.6 (Radon-Nikodym Theorem). If q ≪ µ, then there exists a unique measurable

function f : X → [0,∞]:

dq = fdµ

or equivalently,

q(A) =

∫
A

f dµ, ∀A ∈ F .

where f is the Radon-Nikodym derivative: :

f =
dq

dµ
.
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We can compute the expecation under Q using the Radon-Nikodym derivative dQ
dP

:

EQ[X] =

∫
X dQ

=

∫
X
dQ

dP
dP

= EP

[
dQ

dP
X

]
Definition 1.6. A numeraire is a nonnegative random variable St such that St > 0 a.s.

In general, this can be any non-dividend paying tradable asset.

Given a numeraire St, a measure QS is such that Y/S is a martingale under QS, where Y is

any other tradable asset. (also non-dividend paying)

We note that when the numeraire is Bt, we have Q = QB.

Say under QB, some tradable asset S has this SDE:

dSt = µBdt+ σBdWB
t

Where µB, σB are functions of t, St.

We have by Leibniz’s rule:

d
St

Bt

= Std(
1

Bt

) +
1

Bt

dSt + dStd(
1

Bt

)

Notice the quadratic variation term dStd(1/Bt) is 0, as this is a multiple of dtdWt, which is

0. So we have:

d
St

Bt

=Std(e
−rt) +

1

Bt

dSt

=S · (−r)e−rtdt+ e−rt
(
µBdt+ σBdWt

)
=e−rt (S · (−r)dt+ µdt+ σdW )

=
1

Bt

((µ− rSt) dt+ σdWt)

Since St/Bt is a martingale, which should have zero drift, we must have µ = rSt.

i.e. Under QB, all tradable assets have drifts equal to r times the asset price, which is precisely

the definition of the risk-neutral measure.

Theorem 1.7 (Girsanov’s Theorem). Let Wt be a Brownian motion under the measure P,

and let θt be a predictable process.
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Define the process:

Zt = exp

(∫ t

0

θsdWs −
1

2

∫ t

0

θ2sds

)
Then, under the measure Q defined by the Radon-Nikodym derivative:

dQ
dP

= ZT

the process Wt −
∫ t

0
θsds is a Brownian motion under the measure Q.

1.4 Stochastic Integral

Consider the following SDE:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

We note that t 7→ Wt is continuous but nowhere differentiable.

In other words, dWt cannot be interpreted as a time differential.

Definition 1.7. Let f and g be functions defined on the interval [a, b], where f is a continuous

function and g is a function of bounded variation on [a, b]. The Riemann-Stieltjes Integral

of f with respect to g over [a, b] is defined as:

∫ b

a

f(x) dg(x) = lim
||P ||→0

n∑
i=1

f(ξi)∆gi

whenever this limit exists. Here,

- P = {a = x0 < x1 < · · · < xn = b} is a partition of [a, b], - ξi ∈ [xi−1, xi] is a sample point,

- ∆gi = g(xi) − g(xi−1), and - ||P || is the norm of the partition, given by the length of the

largest subinterval.

We note that by definition, Wt has unbounded variation.

Given a path t 7→ Wt(ω), the integral:∫ t

0

f(s,Xs(ω))dWs(ω)

does not exist as a Riemann-Stieltjes Integral.
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Proof. If it can be defined as a Riemann-Stieltjes Integral, this limit should converge:∫ T

0

σ(Xs)dWs = lim
||P ||→0

n∑
i=1

σ(Xξi)(Wti+1
−Wti)

for any partition P = {0 = t0 < t1 < · · · < tn = T} and any sample points ξi ∈ [ti, ti+1].

This does not work for brownian motion, as the variation of Wt is unbounded.

More precisely, for a partition Pn, define the upper and lower bound:

U(f, Pn) =
n∑

i=1

sup
t∈[ti−1,ti]

f(t,Xt)(Wti+1
−Wti)

L(f, Pn) =
n∑

i=1

inf
t∈[ti−1,ti]

f(t,Xt)(Wti+1
−Wti)

the Riemann Integral exists iff:

U(f, Pn)− L(f, Pn) → 0

Definition 1.8. The Ito Integral uses the left point of each subinterval to define the integral:∫ T

0

f(s,Xs)dWs = lim
n→∞

n∑
i=1

f(ti, Xti)(Wti+1
−Wti)

Definition 1.9. The Stratonovich Integral uses the midpoint of each subinterval to define

the integral: ∫ T

0

f(s,Xs) ◦ dWs = lim
n→∞

n∑
i=1

f(
ti + ti+1

2
, X ti+ti+1

2

)(Wti+1
−Wti)

Remark. Stratonovich looks into the future, while Ito does not.

This is because as we are evaluating at ti, Ito evaluates f(X) at ti, while Stratonovich evaluates

f(X) at ti+ti+1

2
.

Note clearly if f(t,Xt) is a deterministic function of t, then the two integrals are the same.

We know that

E[W ] = 0

E[W 2
t ] = t

WT −Wt ∼ N(0, T − t)
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More formally, in the Ito integral, we have:

E

[∫ T

0

f(s,Xs)dWs

]
= 0

E

[
(

∫ T

0

f(s,Xs)dWs)
2

]
=

∫ T

0

E
[
f 2(s,Xs)

]
ds

1.5 Existence and Uniqueness of Solutions

A sufficient condition for the existence and uniqueness of solutions to the SDE:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

is that µ and σ are measurable, Lipschitz continuous in x and locally bounded in t.

This is known as the Kunita-Watanabe Theorem.

More formally, we need Global Lipschitz Continuity for some K:

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y| ∀x, y ∈ R, ∀t ∈ [0, T ]

and Local Boundedness / Linear Growth for some K:

|µ(t, x)|+ |σ(t, x)| ≤ K(1 + |x|) ∀x ∈ R, ∀t ∈ [0, T ]

1.6 Itô’s Formula

Theorem 1.8 (Itô’s Formula). Let Xt be a stochastic process satisfying the SDE:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

and let f(t, x) be a function of class C2,1, i.e. f is twice continuously differentiable in x and

once continuously differentiable in t.

Then, the process Yt = f(t,Xt) satisfies the SDE:

dYt =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
dX2

t

Or equivalently:

dYt =

(
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2∂

2f

∂x2

)
dt+ σ

∂f

∂x
dWt
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Where we note that

dt2 = 0

dt · dWt = 0

dW 2
t = dt

2 Interest Rate Products

2.1 Zero Coupon Bonds

Definition 2.1. A stochastic discount factor D(t, T ) is the price at time t of receiving 1

at time T.

Consider a deterministic bond Bt with

dBt = rtBtdt

then clearly

Bt = B0 · e
∫ t
0 rsds

letting BT = 1, we have B0 = e−
∫ T
0 rsds = D(0, T ), so the stochastic discount factor is the

price of a riskless bond that pays 1 at T.

Definition 2.2. A Zero Coupon Bond is a bond that pays its Face Value at T. WLOG

assume the face value is 1, then its price at t is given by

P (t, T ) = EQ

[
e−

∫ T
t rtdt

]
= EQ [D(t, T )] (2.1)

where rt is the short rate at time t, and the expectation is taken with respect to the risk free

measure Q.

Note in the case when rt is constant, we have

P (t, T ) = EQ

[
e−r(T−t)

]
= e−r(T−t) = D(t, T )
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2.2 Linear, Compound, Short rates and Annual Spot Rates

Definition 2.3. The Spot Linear / Simply Compounded / LIBOR Rate L is the rate

that pays linear interest.

Basically when you pay X, you are supposed to receive X(1 + L · n) after n years

To receive 1 at T, while paying P (t, T ) at time t, so the spot rate L(t, T ) is given by

p(t, T )(1 + L · (T − t)) = 1

L(t, T ) =

1
P (t,T )

− 1

T − t

=
1− P (t, T )

P (t, T ) · (T − t)

Definition 2.4. The Spot Compound / Continuous Rate R(t, T ) is the rate that pays

continuous interest

Pay X at t and receive X · eR·(T−t) at T

To receive 1 at T, while paying P (t, T ) at time t:

P (t, T ) · eR·(T−t) = 1

so the spot rate R(t, T ) is given by

R(t, T ) =
log(1/P )

T − t
=

− logP (t, T )

T − t

Note here we have the short rate rt = limt→T− R(t, T ) ≈ R(t, t)

Definition 2.5. With R(t, T ), we arrive with the short rate rt:

rt = lim
T→t

R(t, T )

= lim
T→t

− logP (t, T )

T − t

Definition 2.6. The Annual Spot Rate Y is the rate that pays interest annually.

Pay X at t and receive X · (1 + Y )T−t at T

We again solve

P · (1 + Y )T−t = 1

So the spot rate Y (t, T ) is given by

Y (t, T ) =
1

P
1

T−t

− 1
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Figure 1: Yield Curve

In this case the zero coupon bond price is given by

P (t, T ) =
1

(1 + Y )T−t

Definition 2.7. The Zero-Coupon Curve is the curve given by

T 7→

L(t, T ), T ≤ t+ 1,

Y (t, T ), T > t+ 1

Basically, we use the LIBOR rate for expiry within one year, and the annual spot rate for long

term rates.

An example of a yield curve in Feb 2025 is given by Figure 1, where we note that the yield

initially goes down, but goes up when maturity > 5Y .

Note the general bond formula for a maturity of N years is given by

P (0, N) =
N∑

n=1

C

(1 + Y )n
+

F

(1 + Y )N

Where C is the coupon payment, and F is the face value.

For fixed C and F, when price goes down, yield goes up.

The fact that less people demand long term bonds, causes the yield to go up, as investors

expect rates to go up in the long run, hence demand higher yield for long term bonds.

2.3 Forward Rate

A Forward Rate Agreement (FRA) is a contract between two parties, where one party

pays a fixed interest rate and the other party pays a floating interest rate. The contract is
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settled at the end of the contract period.

As we consider at t, the FRA(T1, T2) is a contract that starts at T1 and ends at T2. The fixed

rate is agreed at T1, and settled at T2.

For the period
(
T1, T2

)
, the holder of the Payer FRA pays fixed K ·

(
T2 − T1

)
and receives

floating L(T1, T2) ·
(
T2 − T1

)
.

The holder of the Receiver FRA has the opposite payoff, with payoff at T2 given by

(
K − L(T1, T2)

) (
T2 − T1

)
N,

where N is the notional amount, and we denote τ = T2 − T1.

Holding 1 at T2 is equivalent to holding P (T1, T2) at T1, and holding P (t, T1)P (T1, T2) at t.

So we can use P (t, T1)P (T1, T2) as the discount factor from T2 to t.

Note that P (T1, T2) is random at t, and is denoted as the Forward Price P (t, T1, T2)

Recall that we have

P (T1, T2)

(
1 + L(T1, T2)τ

)
= 1

L(T1, T2) =
1

τ

(
1

P (T1, T2)
− 1

)
Where P (T1, T2) is random at t.

Note that we have D(T1, T2) = D(t, T2)/D(t, T1), but the same doesn’t hold for the zero

coupon bond price P .

Nevertheless to price the FRA, we estimate P (T1, T2) with P (t, T1)P (T1, T2), and have

L̂(T1, T2) =
1

τ

(
P (t, T1)

P (t, T2)
− 1

)
Definition 2.8. To make the FRA fair, we need

K = L̂(T1, T2) =
1

τ

(
P (t, T1)

P (t, T2)
− 1

)
. (2.2)

Which is computable (non-random) at t.

This is the Forward Linear Rate F (t, T1, T2).

Remark.

P (t, T1)P (T1, T2) = E[D(t, T1)]E[D(T1, T2)] ̸= E[D(t, T1)D(T1, T2)] = E[D(t, T2)] = P (t, T2)

As we have no evidence that D(t, T1) and D(T1, T2) are uncorrelated.
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Definition 2.9. Similarly, we can define the Forward Compound Rate R(t, T1, T2) :

By letting K = R(T1, T2) instead of K = L(T1, T2)

Recall

R(T1, T2) =
− logP (T1, T2)

T2 − T1

Writing − logP (T1, T2) = − logP (t, T1) + logP (t, T2), we have

R(t, T1, T2) =
− logP (t, T1) + logP (t, T2)

T2 − T1

. (2.3)

But we continue with the linear / LIBOR rate for now.

2.4 FRA

Note we derived the forward linear and compound rate above informally, by plugging in

P (t, T1)P (T1, T2) for P (t, T2) in the definition of L(T1, T2).

This is not rigorous, so we formally derive the price of FRA below, and derive the forward

rate by setting FRA to 0.

Definition 2.10. Assume N = 1. The payoff of the Receiver FRA(t, T1, T2) at T2 is τ
(
K−

L(T1, T2)
)

To price it at t, we discount the payoff with the factor D(t, T2), and take the expectation

under Q

Receiver FRA(t) = τ EQ

[
D(t, T2)

(
K − L(T1, T2)

)]
= τ K EQ

[
D(t, T2)

]
− τ EQ

[
D(t, T2)L(T1, T2)

]
= τ K P

(
t, T2

)
− τ EQ

[
D(t, T2)L(T1, T2)

]
We note that the second term:

τ EQ

[
D(t, T2)L(T1, T2)

]
= τ EQ

[
D(t, T1)D(T1, T2)L(T1, T2)

]
= τ EQ

[
ET [D(t, T1)D(T1, T2)L(T1, T2)]

]
Where we denote ET as the expectation taken at T1, (i.e. with the filtration FT1).

We note that at T1, D(t, T1) and L(T1, T2) are non-random. Therefore

τ EQ

[
D(t, T2)L(T1, T2)

]
= τ EQ

[
D(t, T1)L(T1, T2)ET [D(T1, T2)]

]
= τ EQ

[
D(t, T1)L(T1, T2)P (T1, T2)

]



2 Interest Rate Products Page 19

= τ EQ

[
D(t, T1)

1

τ

(
1

P (T1, T2)
− 1

)
P (T1, T2)

]
= EQ

[
D(t, T1) (1− P (T1, T2))

]
= P (t, T1)− EQ

[
D(t, T1)P (T1, T2)

]
Again, note that the second term

EQ

[
D(t, T1)P (T1, T2)

]
= EQ

[
D(t, T1)ET1 [D(T1, T2)]

]
= EQ

[
ET1 [D(t, T1)D(T1, T2)]

]
= EQ

[
D(t, T2)

]
= P (t, T2)

So we end up with

Receiver FRA(t) = τ K P
(
t, T2

)
− P (t, T1) + P (t, T2) (2.4)

We solve FRA(K) = 0, and note that the solution is exactlyK = F (t, T1, T2) =
1
τ

(
P (t,T1)
P (t,T2)

− 1
)
:

FRA(K) =
(
τ K P (t, T2)− P (t, T1) + P (t, T2)

)
= 0

K =
1

τ

(
P (t, T1)− P (t, T2)

P (t, T2)

)
Definition 2.11. The Instantaneous Forward Rate f(t, T ) is the estimated rate to be

paid from T to T + dt, computed by taking the following limit

f(t, T ) = lim
τ→0

F (t, T, T + τ) = lim
τ→0

P (t, T )− P (t, T + τ)

P (t, T + τ) · τ

= lim
τ→0

− 1

P (t, T + τ)
· P (t, T + τ)− P (t, T )

τ

We note that both terms in the limit has well defined limits, so the limit of the product is the

product of the limits. So

f(t, T ) =− 1

P (t, T )
· ∂

∂T
P (t, T )

=− ∂

∂T
logP (t, T )

This can be viewed as an estimate for the future short rate r(T ), which is random at t.
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Note under mild regularity conditions, the instantaneous forward rate should converge to the

short rate:

rt = lim
τ→0

f(t, t+ τ)

= lim
τ→0

− ∂

∂T
logP (t, T )

While we previously have

rt = lim
τ→0

R(t, t+ τ)

= lim
τ→0

− 1

T
logP (t, T )

Consider a trivial example of a quadratic zero coupon bond.

P (0, T ) =e−AT 2−BT−C

First we note that we need P (0, 0) = 1, so C = 0.

Additionally we need P (0, T ) ∈ [0, 1), so A ≥ 0 , B ≥ 0.

Then we have

R(0, T ) =− 1

T
(−AT 2 −BT ) = AT +B

r0 =R(0, 0) = B

And

f(0, T ) =− ∂

∂T
logP (0, T ) = 2AT +B

r0 =f(0, 0) = B

So in this case, the instantaneous forward rate and continuous Compounded rate agrees in

the limit to the short rate

2.5 Remarks: Forward Rate is an biased estimator

Note in (2.1) and (2.2), we showed

τ EQ

[
D
(
t, T2

) (
K − L(T1, T2)

)]
= τ K P

(
t, T2

)
− P

(
t, T1

)
+ P

(
t, T2

)
.
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Where

EQ

[
D
(
t, T2

) (
K − L(T1, T2)

)]
= K P

(
t, T2

)
− EQ

[
D
(
t, T2

)
L(T1, T2)

]
.

Hence

P
(
t, T1

)
− P

(
t, T2

)
=τ

(
K P

(
t, T2

)
− EQ

[
D
(
t, T2

)
(K − L)

])
=τ

(
K P

(
t, T2

)
−K P

(
t, T2

)
+ EQ

[
D
(
t, T2

)
L(T1, T2)

])
=τ EQ

[
D
(
t, T2

)
L(T1, T2)

]
So we have

P
(
t, T1

)
− P

(
t, T2

)
τ

= EQ

[
D
(
t, T2

)
L(T1, T2)

]
.

Note the LHS is also equal to F (t, T1, T2)P (t, T2). Thus

F (t, T1, T2) P (t, T2) = EQ

[
D
(
t, T2

)
L(T1, T2)

]
.

Where we had P (t, T2) = EQ

[
D(t, T2)

]
, so in general F (t, T1, T2) ̸= EQ

[
L(T1, T2)

]
. They

would only be equal if D(t, T2) and L(T1, T2) were uncorrelated, which is not generally true.

Similarly we have that the instantaneous forward rate is an biased estimator for the short

rate:

f(t, T ) ̸= EQ

[
r(T )

]

2.6 Interest Rate Swaps

Definition 2.12. An Interest Rate Swap is a contract between two parties, where FRA

are exchanged at future dates Tα, Tα+1, . . . , Tβ.

We define the time intervals τ = (τα+1, . . . , τβ), where τi = Ti − Ti−1.

The Receiver Swap (RFS) has payoff at each payment date given by

Nτi(K − L(Ti−1, Ti))

and the Payer Swap (PFS) has the opposite payoff.

This is simply a sum of FRAs at each (Ti−1, Ti):

RFS(t) =

β∑
i=α+1

FRA(t, Ti−1, Ti, τi)
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=

β∑
i=α+1

τi · P (t, Ti) (K − F (t, Ti−1, Ti))

=

β∑
i=α+1

τi · P (t, Ti)

(
K − P (t, Ti−1)− P (t, Ti)

P (t, Ti) · τi

)
Note that this is equivalent to plugging in the sum of FRA prices: (2.4)

RFS(t) =

β∑
i=α+1

(
τiP (t, Ti)K − P (t, Ti−1) + P (t, Ti)

)
=
( β∑

i=α+1

τiP (t, Ti)K
)
− P (t, Tα) + P (t, Tβ) (2.5)

Again we plug in RFS(K) = 0 to get the fair rate K, or the Forward Swap Rate:

β∑
i=α+1

τiP (t, Ti)K = P (t, Tα)− P (t, Tβ)

⇒ K =
P (t, Tα)− P (t, Tβ)∑

τi · P (t, Ti)

Definition 2.13. The Forward Swap Rate Sα,β(t) is the rate that makes the interest rate

swap a fair contract:

S(t) =
P (t, Tα)− P (t, Tβ)∑

τi · P (t, Ti)

The Receiver Swap (2.5) can be rewritten as:

RFS(t) =N
(∑

τiP (t, Ti)K −
(
P (t, Tα)− P (t, Tβ)

))
=N

∑
τiP (t, Ti)

(
K − S(t)

)
Remark. Note that Sα,β(t) is simply a weighted average of the forward rates:

S(t) =
∑

wiFi

Where

wi =
τiP (t, Ti)∑
τiP (t, Ti)

Fi =F (t, Ti−1, Ti) =
P (t, Ti−1)− P (t, Ti)

τiP (t, Ti)
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2.7 Caps/Floors

Definition 2.14. A Caplet is a European call options on interest rate from Ti−1 to Ti, with

payoff at Ti given by

N · τi (L(Ti−1, Ti)−K)+

And a Cap is simply a sum of Caplets:

N

β∑
i=α+1

τi (L(Ti−1, Ti)−K)+

We discount each payment back to t with D(t, Ti), and take the expectation under Q to price

it at t:

Cap(t) =EQ

[
N

β∑
i=α+1

τi ·D(t, Ti) · (L(Ti−1, Ti)−K)+
]

(2.6)

=N

β∑
i=α+1

τi · P (t, Ti) · Caplet(Ti, τi, K) (2.7)

To price the Caplet, we need to use Black’s formula

Caplet = Black(K,F, σ) = Fϕ(d1)−Kϕ(d2)

d1 =
ln(F/K) + σ2Ti−1

2

σ
√
Ti−1

d2 =
ln(F/K)− σ2Ti−1

2

σ
√
Ti−1

Cap(t) = N

β∑
i=α+1

τi · P (t, Ti) ·Black(K,F (t, Ti−1, Ti), σ)

Here σ is the implied volatility retrived from market quotes in [Tα, Tβ], and F (t, Ti−1, Ti) is

the forward rate.

Similarly for Floorlet, or the put option:

Floorlet = Black(K,F, σ) = −Fϕ(−d1) +Kϕ(−d2)
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Recall the standard Black-Scholes:

C =S0N(d1)−Ke−rTN(d2),

P =Ke−rTN(−d2)− S0N(−d1),

d1 =
ln
(
S0

K

)
+
(
r + σ2

2

)
T

σ
√
T

,

d2 =d1 − σ
√
T .

Remark. A cap is ATM iff its strike is the Forward Swap Rate S(t).

It is ITM if K < S(t), and OTM if K > S(t).

Remark. Similar to Call-Put parity, we have

Caplet(K)− Floorlet(K) =Fϕ(d1)−Kϕ(d2)− (−Fϕ(−d1) +Kϕ(−d2))

=F −K

Which is the payoff of a single payer FRA

We notice for ATM Caplet and Floorlet with K = F (t, Ti−1, Ti), we have Caplet = Floorlet

For ATM Cap and Floor with K = S(t), we have Cap = Floor

This is similar to the Call-Put parity, where we have

C − P = S0 −Ke−rT

And when K = S0e
rT , we have C = P .

2.8 Swaptions

To price swaptions, note that the market Black’s formula for caplets/floorlets, consistent with

the LMM, is not consistent with the market Black’s formula for swaptions, which is consistent

with the SMM.

To price swaptions under LMM, one has to use Monte Carlo simulations

2.8.1 Swap Market Model

SWAPTIONS can be managed well in the LIBOR model only through approximations like

drift freezing. To properly deal with swaptions, one would have to use the SMM
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Recall payoff of swaption at Tα is

(Sα,β(Tα)−K)+
∑
i

τiP (Tα, Ti)

To price it at t = 0, we add a discount factor e−Tα , and take risk-neutral expectation:

EQ

[
(Sα,β(Tα)−K)+

∑
i

τiP (Tα, Ti)
B0

BTα

]

We choose the numeraire Cα,β(t) as:

Cα,β(t) =
∑
i

τiP (t, Ti)

with the related measure be Qα,β, under which any price process divided by Cα,β(t) is a

martingale

We note that in this case, the forward swap rate Sα,β(t) is a martingale:

S(t) =
P (t, Tα)− P (t, Tβ)∑

τi · P (t, Ti)

=
P (t, Tα)− P (t, Tβ)

Cα,β(t)

SO that it has zero drift GBM under Qα,β:

dS(t) = σS(t)dWα,β
t

Applying change of numeraire:

EQ

[
(Sα,β(Tα)−K)+Cα,β(Tα)

B0

BTα

]
=EQα,β

[
(Sα,β(Tα)−K)+Cα,β(Tα)

C0

Cα,β(Tα)

]
=Cα,β(0)EQα,β

[
(Sα,β(Tα)−K)+

]

Under this setting, we can simply apply Black’s formula:

Swaption(0) = Black(S, F, σ) = Cα,β(0)

[
Sα,β(0)ϕ(d1)−Kϕ(d2)

]
=

∑
i

τiP (0, Ti)

(
Sα,β(0)ϕ(d1)−Kϕ(d2)

)
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Remark. SMM is the only model that is consistent with this market formula.

LMM is not compatible with the Black formula for Swaptions.

2.9 Swaption Under LMM

3 One Factor Short Rate Models

3.1 Vasicek Model

drt = k(θ − rt)dt+ σdWt

rt = r0e
−kt + θ(1− e−kt) + σe−kt

∫ t

0

eksdWs

We know that k is speed of mean reversion, θ is the long term mean, and σ is the volatility

of the short rate.

The drift term k(θ−rt)dt is linear in rt, and the diffusion term σdWt is linear in dWt, suggesting

the rates is normally distributed, meaning it can go negative.

To compute the variance:

V ar(rt) = V ar

(
σe−kt

∫ t

0

eksdWs

)
= E

[(
σ

∫ t

0

ek(t−s)dWs

)2
]
− E

[
σ

∫ t

0

ek(t−s)dWs

]2
= σ2

∫ t

0

e2k(t−s)ds− 0

=
σ2

2k
(1− e−2kt)

So we have rt ∼ N (A,B), where

A =r0e
−kt + θ(1− e−kt),

B =
σ2

2k
(1− e−2kt)

We can see that as t → ∞, A → θ, and B → σ2

2k
,
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i.e. for larger k, the convergence is faster, and smaller volatiltiy in the long run.

More generally, this is a special case of the Ornstein-Uhlenbeck process,

dxt = α(µ− xt)dt+ σtdWt

where xt is the state variable, α is the speed of mean reversion.

Some of the problems with this model are:

• The short rate can go negative,

• Gaussian has thinner tails than market implied distributions,

• The model is endogenous, meaning it cannot reproduce the yield curve.

The CIR model is an improvement on the first two points.

To solve the third point, we can develop an exogenous model by making θ a function of time,

θ(t), i.e.

drt = k(θt − rt)dt+ σdWt

So we arrived with the one-factor Hull-White model.

3.2 CIR Model

For r0 > 0,

drt = k(θ − rt)dt+ σ
√
rtdWt

ensures positive interest rates with the Feller condition 2kθ > σ2, (otherwise hits 0).

Again we compute the mean and variance:

E[rt] = r0e
−kt + θ(1− e−kt)

V ar(rt) =
σ2

2k
(1− e−2kt)θ + r0e

−ktσ
2

k
(1− e−kt)
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In this case rt has a non-central chi-squared distribution, has fatter tails than Gaussian, hence

closer to market implied distributions.

It is less tractable, especially in in multi-factor extensions, where we need to add correlation

between the factors.

A problem still, is that Gaussian distributions for the rates are not compatible with the mar-

ket implied distributions as they have tails that are too thin.

In particular, both models are affine models.

P (t, T ) = A(t, T )e−B(t,T )rt

Additionally, we work out the continuously compounded spot rate R(t, T ),

So

R(t, T ) = − lnP (t, T )

T − t

= − lnA(t, T )

T − t
− ln e−B(t,T )rt

T − t

So R is an affine transformation of rt.

This suggests perfect terminal correlation:

Corr(R(t, T1), R(t, T2)) = 1

4 Libor Market Models

4.1 Forward Measures

We recall that the risk neutral measure Q is using the money market account Bt = ert as

numeraire.

Definition 4.1. T-Forward Measure
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Let T > t be a fixed time horizon. The forward measure QT uses the zero-coupon bond

P (t, T ) as numeraire.

i.e. Let St be some price process, then St/P (t, T ) is a QT -martingale.

St

P (t, T )
= EQT

[
ST

P (T, T )

∣∣∣Ft

]
= EQT

[
ST

∣∣∣Ft

]
We can also use ET

t to denote the expectation at t under QT , then

V (t) = ET
t [V (T )]P (t, T )

5 Post-LIBOR

5.1 Libor Scandal

In early 2010s, banks like Barclays, UBS, and RBS were found to have manipulated the LI-

BOR rate.

A team within a bank’s Treasury or Money Market Desk should independently estimate the

rate at which they can borrow from other banks, without influence from the trading desk.

The LIBOR rate is the average of the rates submitted by the banks, excluding the highest

and lowest 25% of the submissions.

Traders were found to influence the submitters and help out each other, by submitting lower

rates to make them look stronger (when they can’t borrow at that rate), or higher rates when

they hold payer IRS (and receive L−K).

By the 2010s, the volume of unsecured interbank lending had shrunk significantly. Banks were

borrowing less from each other because:

Post-2008 regulations (Basel III) discouraged excessive interbank lending.

Banks relied more on secured funding (repo markets) rather than unsecured loans.

By the time regulators pushed for actual loan-based LIBOR submissions, there were only a

few billion dollars of daily transactions, not reliable enough to serve as the benchmark for

hundreds of trillions of dollars worth of financial products that it should.

In 2017, the FCA announced that LIBOR would be phased out by 2021, and replaced by the
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SONIA rate in the UK, and the SOFR rate in the US.

• US: The Secured Overnight Financing Rate (SOFR)

• UK: The Sterling Overnight Index Average (SONIA)

• Eurozone: The Euro Short-Term Rate (ESTR) and EURIBOR continues to be used

Based on those rates, the new IRS is called overnight index swaps.

5.2 Collateralized vs. Uncollateralized Borrowing Rates

Definition 5.1. Collateralized Rate is the rate of loans backed by collateral.

The borrower pledges assets (e.g., government bonds) to secure the loan.

Examples include SOFR (US) Based on U.S. Treasury-backed repo transactions, and TONA

(Tokyo Overnight Average Rate) based on Japanese government bonds.

On the other hand, both LIBOR and SONIA are uncollateralized rates.

Collateralized borrowing rates tend to be lower than uncollateralized rates because they have

less credit risk.

5.3 Daily Compounded Rates

OIS are linked to daily rates, but exchange payments usually FOR 3M, 6M, 1Y, etc.

This is an important book in finance [1].

This is an important book in finance [2].
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