Sum of Dice#
A dice is a discrete uniform from {1, 2, …, 6}
For X ~ U(a, a+1, …, b),
\[
\mathbb{E}[X] = \frac{a+b}{2}.
\]
\[
\text{Var}(X) = \frac{(b-a+1)^2 - 1}{12}.
\]
Clearly for a dice,
Var(X) = 35/12
For the sum of n IID X ~ U(a, a+1, …, b), by CLT
\[
S \sim N\left(n \cdot \frac{a+b}{2}, n \cdot \frac{(b-a+1)^2 - 1}{12}\right).
\]
Applicable on fair coin, where a = 0, b = 1,
\[
S \sim N\left(\frac{n}{2}, \frac{n}{4}\right).
\]
Applicable on fair dice, where a = 1, b = 6,
\[
S \sim N\left(3.5 \cdot n, \frac{35}{12} \cdot n\right).
\]
Sum of N dice, or N times one dice, which is bigger?
Same expectation
Var(S1) = N^2 * 35/12 = N Var(S2)