Hopping Rabbit Problem#
Classical “Hopping rabbit” problem
A rabbit can jump one or two steps, how many ways to get to the top of n stairs?
def f(n):
if n == 1 or n == 0:
return 1
return f(n-2) + f(n-1)
f(3) # 111, 12, 21
3
Mathematically, say take x of 2-jumps, (n-2x) of 1-jumps.
x can be 0, 1, … up to floor(n/2)
For each x, can have (n-2x+x choose x) ways
So in total, \( \sum_{x=1}^{\lfloor n/2 \rfloor} \binom{n-x}{x} \)
import math
def f2(n):
N = n//2
ans = 0
for i in range(n//2+1):
ans += math.comb(n-i, i)
return ans
f2(3)
3
for i in range(10):
if f(i) != f2(i):
print(i, f(i), f2(i))
break
if i == 9:
print(i, f(i), f2(i))
9 55 55